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Compressive strength of a rigid-rod polymer fibre 
embedded in an isotropic matrix 

R. HENTSCHKE,  M. J. KOTELYANSKI I  
Max-Planck-lnstitut for Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany 

The results are presented of an approximate elastic stability analysis for an anisotropic 
polymer fibre under compressive stress, which is embedded in an isotropic elastic matrix. 
This case, which thus far has not been treated properly, corresponds most closely to the 
experiments, which yield the best quantitative measurements of the compressive strength 
of high-modulus polymer fibres. Within the limits of a weak matrix, i.e. the shear modulus of 
the matrix is small compared to the shear modulus of the fibre, a simple analytical formula 
has been obtained for the compressive strength of the fibre in terms of its longitudinal 
Young's modulus, and the Poisson's ratio and shear modulus of the matrix. On the other 
hand, for a strong matrix the compressive strength of the fibre is solely determined by its 
shear modulus. For the intermediate regime, a simple but highly accurate interpolating 
expression has been constructed. 

1, Introduction 
Aramid fibres based on poly(p-phenylene tereph- 
thalamide) (PPTA), polybenzamide (PBA) and other 
high-strength, high-modulus, rigid-rod polymer fibres, 
have impressive tensile strength at low specific weight 
[1]. The good tensile properties result from a high 
degree of molecular alignment, which is favoured by 
the rigid-rod character of the molecules. The compres- 
sive strength of these materials, however, is typically 
less than 25% of their corresponding tensile strength. 
Thus, there is a significant interest in increasing the 
compressive strength of rigid-rod polymer fibres 
without, at the same time, diminishing their tensile 
strength (see, for instance [1-3]). Quite a number of 
experimental, theoretical and combined studies, with 
the theoretical approaches both on the molecular level 
[-4-6] and in terms of continuum approaches [4, 7] 
based on elastic stability arguments [8, 9], have fo- 
cused on this problem [-7, 10-16]. Despite this, how- 
ever, compressive failure in rigid-rod polymer fibres is 
still not very well understood. 

Experimentally, the onset of compressive failure 
manifests itself in the formation of kink bands (local- 
ized deformation concentrations) along the fibre. 
Interestingly, most electron micrographs of fibres ex- 
hibiting kink bands, suggest a quasi-periodic inter 
kink band distance [4, 7, 10] rather than a completely 
irregular spacing as one might expect if the kink band 
formation was tied to random defects. Thus it is not 
unreasonable to expect compressive failure to be in- 
itiated at a certain wavelength, which can be derived 
from elastic buckling theories [-8, 9]. The simplest of 
these is the Euler buckling of slender isolated rods 
[-8, 9] which predicts a critical compressive strength, 
o~, proportional to X . . . .  q2, where X . . . .  is the longitu- 
dinal Young's modulus, q~ ~ 1/L is the critical buck- 
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ling wave vector, and L is the rod length. Even though 
a sinusoidal buckling pattern may be observed in 
polymer fibre composites [17], this simple model is 
not really applicable to these cases. For instance, the 
buckling is typically not observed with the smallest 
q as this model predicts. Also, it is not clear what 
L really is. If L simply is taken to be the fibre length, 
then ere usually is hopelessly small. The same is obvi- 
ously true if the Euler formula is applied on the 
molecular level and L is taken to be the chain length. 
On the other hand, one can get within a factor of two 
to three of the experimental ere by identifying L with 
the wavelength of the surface ripple structures in 
skin-peeling experiments on Kevlar 49 and PBO fibres 
[153. But it is difficult to justify this definition of L. 
Most of these problems arise because the simple Euler 
buckling model applies to isolated fibres, whereas 
typically a fibre is embedded in an anisotropic net- 
work of other fibres or in a more or less isotropic 
composite matrix. A simple theoretical model, which 
is supposed to take this into account, is the "beam on 
an elastic foundation" [8, 9]. This model, which sim- 
ply includes the elastic response of the matrix by 
a term proportional to the square of the lateral fibre 
displacement, yields a critical compressive strength of 
the form er~ = ere + Cq~ 2, where ere is the above 
Euler contribution and C describes the stiffness of the 
foundation (or matrix). Thus, here the critical qr is 
finite and proportional to (C/X . . . .  )1/4. Therefore, the 
critical strength can assume any value governed by the 
size of C, and the corresponding wavelength might be 
compared with the experimental inter kink band dis- 
tance at the onset of compressive failure. Notice also 
that in this model L does not appear in the final 
expression for er~, explicitly. However, the authors are 
only aware of calculations, where C is an ad hoe 
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constant rather than being calculated in terms of the 
elastic constants of the matrix material (even though 
C sometimes is identified with the transverse modulus 
of the foundation [9]). Another shortcoming of this 
extended model is that it cannot account for the 
simple relation ~c ~ G/3, where G is the longitudinal 
shear modulus of the fibre, which seems to be obeyed 
by a number of different anisotropic fibres [12, 18]. 
The shear independence of above buckling models 
holds only under conditions when ~rE ~ G. Two simple 
extensions of the Euler theory for isolated beams 
taking shear corrections into account (for vanishing 
Poisson's ratio) are 

[ (  O- /t 4nO'E'~ 1/2 I G ~ = 1 + - - - - 7 - - 1  - -  1 - -  ( 1 )  
2n 

and 
O" E 

crr (2) 
1 + n~E/G 

where n is a constant, which depends on the beam 
cross-section (n ,.~ 1.1 for circular cross-sections and 
n ~ 1.2 for rectangular cross-sections) [9]. Note that 
for ~E ~ G, both expressions show the same limiting 
behaviour, i.e. oc ~ c r~(1-  notE~G), which for solid 
slender isotropic columns is the relevant limit. Thus 
shear reduces the compressive strength. If we consider 

t h e  opposite limit, i.e. ~ ,> G, by-passing momentar- 
ily the question of the validity of the above expressions 
in this limit, we obtain the leading behaviour 
t~ c ~ ( ~ E G / n )  t/2 and or G/n, respectively. Notice 
that the second expression would indicate a behaviour 
similar to what is observed, even though n is too small. 
Notice also that if we can combine the second shear 
correction expression, i.e. Equation 2, with the elastic 
foundation model, which prevents the critical q from 
becoming small for large L, then the limit cr E >> G is 
not at all unrealistic for rigid-rod'polymers for which 
~. . . . .  >> G. However, Zwaag et al. [7] show the ad hoc 
combination of the second shear correction expression 
with ~ calculated according to the above "beam on 
an elastic foundation" model, to overestimate by 
about a factor of three, the compressive strength of an 
aramide fibre embedded in epoxy. Nevertheless, the 
basic form of the second shear correction expression is 
appealing, because it combines the two limiting cases 
into one expression. Thus, it is worth exploring 
whether this or a similar expression for rye can be 
derived somewhat more formally including the em- 
bedding matrix in terms of its elastic constants. It is 
also worth adding that the fibre failure can be thought 
of in terms of cooperative modes on the chain level. 
Extending an analysis of Rosen [19], DeTeresa et al. 
[4] have investigated two different cooperative failure 
modes one giving the same result as the foundation 
model and the other giving o-o = G. 

In this work, an elastic stability analysis was carried 
out of a rigid-rod polymer fibre based on the standard 
expression for the elastic free energy of the uniaxial 
anisotropic solid. The two main assumptions, which 
were used to simplify the problem, are two-dimen- 
sionality, i.e. only the plane of bending, and u(x,z) 
= u(z), where u(z) is the fibre displacement along z, 

the direction perpendicular to direction of the un- 
buckled fibre axis, x, are considered. The two-dimen- 
sional fibre is embedded in an isotropic matrix charac- 
terized by its shear modulus, ~t, and Poisson's ratio, v. 
In the two limits for weak and strong matrices analyti- 
cal expressions for eye are obtained from which we 
construct a simple interpolating expression, given by 

OE 21a 
cy~ - + (3) 

1 + CYE/G (1 -- v)qob 

where qr corresponds to the minimum of or(q), and b is 
the fibre width. By comparing this expression to the 
numerical solutions, we show that the interpolation 
approximation is indeed a very good one. In addition, 
we study the crossover between the region where % is 
a strong function of the matrix elasticity and the 
region where ~c ~ G. Finally, we discuss the theoret- 
ical predictions in the context of the available experi- 
mental data. 

2. Elastic instability of the isolated 
anisotropic fibre 

Consider an isolated uniaxially anisotropic fibre, 
which becomes unstable due to an external axial com- 
pressive stress. The total potential energy of the fibre is 
given by 

ff llSfibr e ~-- H d x d z  (4) 
J -  b/2 

where L is the length and b is the width of the fibre in 
the plane of bending (of. Fig. 1), i.e. the plane of 
bending is the xz-plane and the y-direction is omitted. 
The integrand is 

(y ~ 2 ~ 2 

. . . .  

• ( 2 ~ . ~  + ~ )  ~ u(x, z) (5) 

+ 2s ~ w(x. z) -~x u(x, z) 

2 

where the first term is the work done by the compres- 
sive stress, ~, along z and the remainder is the elastic 

b/2 

- b / 2  

I U 

C ~  ~_W 

J [ =z 

FiBre l Schematic illustration of a section of the unbent and 
the bent fibre characterized by the displacements u along x and w 
along z. 
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where w~ (x, 
buckling of 
c o m e s  

free energy for the case of a material with uniaxial 
symmetry [8]. The five Xs are the elastic constants of 
the uniaxially anisotropic material. 

The second main assumption is 

u(x, z) = u(z) (6) 

which is known to be quite reasonable for slender 
beams [8]. Notice that due to the two-dimensional 
formulation of the model and the assumed x-indepen- 
dence of u(z), there are only two remaining elastic 
constants, i.e. 

1 [~z 1 2 1  [~z 12 g = -- ~ (y u(z) + ~ )~ .... w(x, z) 

I 1 a + a__ u(z) (7) + ~'~'~ ax w(x, z) az 

Notice also that H can be mapped on to the corres- 
ponding isotropic case via ;%=J2 = X/2 + p and 
;~n= = g/2, where ;~ is the Lam6 coefficient and la is 
the isotropic shear modulus. By writing the displace- 
ment field w(x, z) as 

w(x,z) = - X UzzU(Z ) + w~(x,z) (8) 

z) = 0 leads to the simple shearless Euler 
slender columns (see below), H thus be- 

1 H = - -~ ~ u ( z )  

X l a 2  a ]2 
-~ ~ )~ . . . .  -- X ~Z 2 hi(Z) "~ ~Z WI(X'Z) 

1 + X~nz a wt(x,z) (9) 

The goal is to minimize the fibre potential energy for 
this approximation of H, where the minimization has 
to comply with the conditions 

~knk = 0 (10) 

where 

~H 
crik = auik (11) 

for the surface stress components, oh j, along the free 
surface of the fibre. Here nk is the kth component of the 
surface normal vector. Because the y-direction is ex- 
cluded and because clamped fibre ends is assumed, the 
only remaining equations are those where k = x. No- 
tice, however, that ox~ does not appear here, because 
the approximate H does not depend on u~  = Ou/Ox. 
Thus the only boundary condition is 

cy=~ ==~2 = 0 (12) 

i.e. 

[ I S + e-- w(x,z)l  ~=~ 

a z) ~:~- = 4X~n~x x wl(x, = 0 (13) 
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Bending 2~,'~ ~-- wl 
with shear-----~ ~/ ""-'= 

~ " , ,  Shear force 

l W . . 1 " -  / ~ Bending 
~L~'~"~ ~ ~ -  f - ~ ' ~  without 

~ shear 
Z 

Figure 2 Schematic illustration of the effect of shear on the fibre 
cross-section. 

2.1. The fibre profile 
In order to proceed, a reasonable approximation must 
be made for w~(x, z). Notice that the shear force acts 
parallel to the cross-sectional plane and thus predomi- 
nantly increases the deflection 8u(z)/Oz without, at the 
same time, increasing the displacement along x (see 
Fig. 2). Thus, to a first approximation, the effect of 
the shear correction is to yield a reduced effective 
deflection, i.e. 

w(x,z) = - X [~z U(Z) - ~(x) ~ u(z) ] (14) 

so that 

wl(x, z) = x~(x) Uz u(z) (15) 

With this we obtain for the fibre potential energy 

12 ~f~bro = - -  ~ 0 . ( Z )  
J -  b[2 

1 l- g2 -12 
(16) 

2 0 2 

+ X~zn~[x ~--~(x) + e(x)] [~zzU(Z)] dzdx 

and the above boundary condition becomes 

4)~znz u(z) x ~xx e(x) + 8(x) x=~2 = 0 (17) 

Note that by symmetry, i.e. both sides of the fibre are 
identical, a(x) should be an even function of x. Here 
a(x) is written as a polynomial in even powers of x/b, 
i.e. 

2 . 2 .  Single-mode buckling 
Assuming that the elastic failure of the fibre can be 
described in terms of a single wave vector q = 2gilL 
(j  = 1 . . . .  ) gives 

u(z) = uo [1 - c o s  (qz)] (19) 



Note that fo r j  = 0 there is no displacement. With this 
we obtain 

~fibre 
Lbq2u~ ( L . . . .  b2q2~ 

4 _ - o +  12 / (20) 

,~ L~ . . . .  baq 4 
- ~ ~ - -  ( u ~ , ~ )  

k= 0 4 (2k + 3) 

6 C~. . . . .  b3q 4_ ,u2e , 
- k~o4k,+2(2k, + 3) t o 2k') 

LL . . . .  baq 4 
+ k=0 ~ k'=O ~ e2ka2g, u~ 4k+k,+2(2 k + 2 k ' +  3) 

2LbX~m~q2(4kk ' + 2k + 2k' + 1)~ 
+ 4k'+k+l(2k + 2k' + 1) I 

or in matrix form 

where SS § = 1, and 1 is the identity matrix. Here the 
Lj are the eigenvalues of M (not to be confused with 
the elastic constants). Clearly, the amplitude of rc di- 
verges if one ki turns negative - which means that the 
fibre fails. 

3. The isolated fibre compared to the 
fibre on an elastic foundation 

Before Equation 26 is discussed, one additional aspect 
must be included. The above approach always yields 
the smallest possible critical q given by 2~/L - as will 
be seen. However, this is not necessarily the correct 
one for a fibre, which is not isolated but has lateral 
support. A common extension is the case of a beam 
(fibre) on an elastic foundation, where the foundation 
is included in the above elastic free energy (cf. Equa- 

FU I T  
"Kfibr e = Le~k,j 

Lbq2 ( - t y  + ~" . . . .  b2q2~ 

LL . . . .  ba q 4 
4k'+2(2k ' + 3) 

(21) 

I LX . . . .  bSq 4 
4k+k'+2(2k + 2k' + 3) 

4k+2(2k + 3) UO 

2LbZ~m~q2(4kk ' + 2k + 2k' + 1)] e2k 
+ 4k'+k+l(2k+2k ' + 1) 

w h e r e  ~'2k = ~2kUo denotes a sequence of coefficients 
with k = 0, 1 . . . . .  n. 

The amplitude vector can be found as well as the 
critical compressive strength, ere, from the condition 

8 (~nbr~ + xg) = 0 (22) 

where ~ is a Lagsange parameter conjugate to the 
boundary condition 

qK~n~(2k 
22a_ 2 1)e~k = 0 (23) 

+ 

/ = 0  

Again, writing Equation 22 in matrix notation, 

rc = v + My (24) 

where v [uo ' ' ' and GO ~2.  - ~2n 17] 

fibre 11 

M = ~fibre21 

0 

~fibrel2 0 

qX~(2k + 1) 
~fibre22 22k - 2 

q~m:(2k' + 1) 
0 22k ' - 2 

(25) 

Notice that M is a real symmetric (2 + n) x (2 + n) 
matrix. The onset of compressive failure is then equi- 
valent to the condition 

det(M) = 0 (26) 

This is because we can write 

= v+Mv = v+SS+MSS+v = ~Xj(v+S)~ (27) 
3 

tion 7) via a term proportional to u 2, i.e. 

1 IO ]2 1~- [-~ ~ 2 -]2 . :  - <, + . . . .  / 

(28) 

where C describes the elastic stiffness of the lateral 
support. A calculation analogous to that for the iso- 
lated fibre shows that the only difference is that now 

Lbq 2 r ~ . . . .  12b2q2 3 b-~C ] rtfibrell = - -~- - -L--er  + + (29) 

Using Equation 29 instead of the 11-entry in Equation 
21, we finally obtain the critical r by solving Equation 
26 for er(q), where 

oc = o(qc) (30) 

and qc follows from 

~(Y q=qc  ~-~ = 0 (31) 

Here the computer program Mathematica [20] is used 
to solve analytically Equation 26 for o(q) as well as for 
all other calculations. 

For  the simplest case, n = 0, the classical textbook 
result is obtained 

C 
(~ = ~ E  -~" 3 ,-2--2 (32) 

/7 t] 

1645 



where 

and 

~zzz= bZq 2 
o~ 12 (33) 

F C q~/4 
bq< -- L36 (34) 

Notice that ~E is commonly written in terms of the 
moment of inertia of the fibre cross-section, given for 
example, by b4/12 for a square fibre cross-section. 

The next slightly more complicated case is n = 1, 
which yields 

/ (  17 __~)( __1 ~G] 3C 
(Y=C~E 1 + ] ~  1 + 7 0  G / + b ~  (35) 

where G = 2X~:~:. Here shear corrections begin to 
appear. Notice that for C = 0 an expression is ob- 
tained which is very close to another textbook result, 
i.e. Equation 2, discussed in Section 1. In fact, the 
expansion of Equation 35 to second order in ~YE yields 
~Y = C~E (1--1.2 (YE/G), which is identical to the cor- 
responding expansion of Equation 2 for the case of 
rectangular cross-sections. Thus, taking shear into ac- 
count leads to a reduced compressive strength. 

Instead of trying to work out the critical q for this 
formula, it is more useful to look at what happens for 
even higher n. Because the expressions for cy become 
increasingly complicated we turn to a discussion in 
terms of numerical examples. Figs 3 and 4 show c~/G 
as obtained from Equation 26 as a function of qb for 
n = 0, 1, 3, 5, 7. Note that the stiffness C = 0 in Fig. 3, 
whereas in Fig. 4 we have C > 0. For  C = 0 the critical 
q is always 2rUL, as anticipated. For  C > 0 the critical 
q is no longer necessarily 2~/L. Notice also that what 
used to be the second shear correction for C -- 0 (i.e. 
Equation 2), is now the same expression but with eYE 
replaced by eYE + 3C/(bq) 2 as elsewhere I-7]. Clearly, 
the effect of increasing C is that both the critical 
compressive strength, i.e. minimum of o, as well as the 
corresponding critical q, are increased. But the pres- 
ence of shear always ensures that c~ is bounded from 

2 

1.5 

L9 
~. 1 

0.5 

0 
0.001 

. . . . .  ' " 1  ' ' ' ' " " 1  ' ' ' ' 1 ' " 1  ' ' ' l ' " " l  ' , " , , ,  , , , , , , , ,  

,'"77/1 
/ 1"7 / / 1 

......... -I 

....... , i.i..i 1 
0.01 0.1 1 10 100 1000 

qb  

Figure 3 Fibre compressive strength, cy, divided by the fibre shear 
modulus  G versus the reduced wave vector qb for the isolated fibre. 
The different lines are for n = ( - - - ) 0 ,  (i) 1, (i i) 3, (iii) 5, (iv) 7 com- 
pared to the second shear correction Equation 2 discussed in Sec- 
tion 1 ( - -  - - - ) .  The curve for n = 0 is identical to the simple Euler 
buckling of a rod with clamped ends. Notice that here 
~,=== = 123 G P a  and X~,,,~, = 1 GPa,  which roughly corresponds to 
Kevlar [18]. 
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Figure 4 r versus qb for n = ( -  - -)0,  (i) 1, (ii) 3, (iii) 5, (iv) 7 as in 
Fig. 3 but for C r  i.e. C = ( a )  0 .001GPa,  (b) 0 .01GPa,  
(c) 0.1 GPa.  ( - - )  The second shear correction Equation 2 dis- 
cussed in Section 1 but with ~E replaced by ~E + 3C/(bq) 2 as in [7]. 
As in Fig. 3, X . . . .  = 123 GPa  and ~ = n ,  = 1GPa.  

above by the shear modulus. The problem with this 
approach is that adding the C-term is an ad hoc 
addition, and, in particular, it is unclear how C relates 
to the elastic constants of the medium in which the 
fibre is embedded. 

4. The d isp lacement  field and the elastic 
potent ia l  energy in an e m b e d d i n g  
infinite isotropic m e d i u m  

Here the embedded fibre is treated more formally. The 
goal is to derive an expression for 

~tmal ~ ~fibre @ TCmatrix (36) 

We already have an expression for the fibre contribu- 
tion to the total potential energy, and thus here an 
expression is derived for the matrix contribution. In 
addition, the fibre-matrix interface is then dealt with 
assuming a tight cohesion between the fibre and the 
matrix, i.e. the displacements in the two media are 
identical at the interface. In order to calculate It:matrix 
the fibre-induced displacement field inside the 
matrix must be known, which obeys the equilibrium 



condition (cf. [8]) 

1 
V2o~ + ~ VV m = 0 (37) ' 

where o~ = (u, w) and VV'~  = grad d ive ,  or in t e rms  
of the components 

82 82 82 

(1 +f~)~xTxzU(X,Z)+-~75zzU(X,Z)+f~-~TzW(X,z)=O and 

(38) 

and 
8 2 8 2 8 2 

(1 + f ~ ) ~  w(x, z) +-~x2 w(x, z) + f~-~Z~X u(x, z) = 0 

(39) 

where f~ = 1/(1 - 2v) and v is the Poisson's ratio of 
the matrix material. The somewhat lengthy but 
straightforward solution of this set of equations is 
contained in the Appendix. Here we merely state the 
final result for the matrix potential energy, i.e. 

=[C1]I~matrixll ~matrixl2~[ C1] (40) 
~matrix C2 L 7~matrixl2 7~matrix22J C2 

where 

4Lq 
~matrixl 1 - -  ~.~2eb q 

x {X + pI212(~'1 + 2) + f~(3f~ + 2)(bq + 1) 

~2bZq2 1} + ~ + 3 (41) 

nmamx22 -- qf~2eb q [ + p 12(~ + 2)(bq + 1) 

122b202 1} 
+ ~ + 3 (42) 

M =  
4L ()~ [ 

71;matrixl2 = 122ebq k + p 21210 + 1)(bq + 1) -4- 1] 

+ ~ + 3 (43) . 

Notice that )v = 2~)vg, i.e. ~ is the matrix's Lam6 
coefficient and p is the matrix's shear modulus. In 

addition, we have the two equations (cf. Appendix) 

- b " 2 / b q  1 ) 
g+4pqe  q/ ~ 2 + ~ + 1 .  cl 

(44) 

Uo + 2e -bq/2 + ~ + 2 cl 

+ -  e-  q/ + + 1 C 2 = 0 (45) 
q 

which result from the stress-boundary condition and 
t h e  equality of the displacements at the fibre-matrix 
interface, respectively. 

5. Elastic instability of the embedded 
anisotropic fibre 

Now everything can be put together and the stress 
necessary to induce an elastic instability of the embed- 
ded fibre with a specific q, can be calculated. The 
reasoning in this case is completely analogous to the 
case of the isolated fibre. In addition, there are two 
constraining equations (44 and 45), which are again 
included via the method of Lagrange multipliers. As 
before, we find the compressive strength from Equa- 
tion 26, where now 

~fibre 11 ~fibre 12 0 

q~.~=~,(2k + 1) 
~fibre21 7[flbre22 22k-  2 

0 qX~n~(2k + 1) 0 
22k-2 

1 0 0 

- b "2/'bq -~1 ) 0 0 41.tqe q/ ~ +  + 1 
/ 

1 0 0 

0 

2e-bq/2 ( ~  + ~ + 2) 

2 b '2[bq 2 -e  ~ q/ / m + - - + l  J q \ 2  f~ 

0 0 

41.tqe-bq/2(b--ff~+~+l) 21ae-bq/E(bq+2) 

2e -b~/z + -~ + 2 -e-q 4/2 + -~ + 1 

7~matrix 11 7~matrix 12 

~matrix 12 ~matrix22 

(46) 
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U ~ r and v = [ 0~2~'~1~2ClC2], where again e2k denotes  
a sequence of coefficients for k = 0, 1, . . . ,  n, i.e. v is 
a 5 + n -componen t  vector  and M is a (5 + n) x (5 + n) 
real symmetr ic  matr ix.  No te  also tha t  now zl and z2 
are bo th  Lagrange  pa rame te r s  conjugate  to Equat ions  
44 and  45. 

Again, as in the case of  the elastic foundat ion,  we 
mus t  first s tudy a numerical  example.  As in Figs 3 and  
4, we use Z = ~  = 1 2 3 G P a  and )~gzn~ = 1 GPa .  As 
Fig. 5 shows, the qual i ta t ive behaviour  of  the embed-  
ded fibre is very similar to wha t  was ob ta ined  above  
for the ad hoc t r ea tment  of  the fibre on a foundat ion.  
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Figure 5 c~/G versus qb for the anisotropic fibre embedded in an 
isotropic elastic medium for n = (i) 1, (ii) 3, (iii) 5, (iv) 7 and different 
matrix shear moduli g, i.e. g = (a) 0.001 GPa, (b) 0.01 GPa, (c) 
0.1 GPa and (d) 1.0 GPa. (- - -) Approximate o given by Equation 
47, ( - - - - - )  interpolation Equation 51. As in Figs 3 and 4, 
~ ,~  = 123 GPa and ~ n  ~ = 1 GPa. In addition, the Poisson's ratio 
of the matrix is taken to be v = 0.35. 

Increasing the stiffness of  the matr ix,  which here 
means  increasing g, increases bo th  the critical cr as 
well as the a t t endant  qc. Again, ere is bounded  by the 
fibre shear modulus  G equal  to 2)~nz. 

We can calculate analytical  expressions for the com-  
pressive s t rength of  the fibre within the mat r ix  in 
certain limiting cases. First  we take the result for n = 1 
and  expand  it in terms of the fibre shear  modulus ,  g, as 
well as in terms of (rE to lowest order.  W e  obta in  the 
simple result 

2g 
cr = ~E + (47) 

(1 - v ) q b  

for which 

q4 __ ~ B q 3  

where 

12 p )1/3 
qob = Z~-~z~ 1 -- v (48) 

as Z . . . .  ra ther  than  as ~ in the Not ice  that  q~ scales i/3 1y4 
case of  the foundat ion.  The  pe r fo rmance  of  this ap-  
p rox imat ion  is i l lustrated in Fig. 5. I f  we take  into 
account  higher  order  correct ions we obta in  

2g 6 o z 5 1 o ~  
cr = eYE + (1 -- v)qb 5 G + 3-5G-~ + O (~ (49) 

where  the correct ions now depend on G. The  limit for  
smal l  G (or, wha t  turns out  to be the same,  for  large q), 
can also be worked  out, which yields 

cr = G + (1 )q/~ 1 + (3 --  4v) + O(G 3) (50) 

The  two formulas  hold f o r  all n invest igated (the 
m a x i m u m  n in our  case is 7). 

Because even for n = 1 the expression for o is some-  
what  complicated,  it is desirable to  have  a simple 
approx ima te  expression for the entire q-range. There  
are several conceivable interpolat ions between the two 
limiting cases. One, which is simple and  ra ther  accu- 
rate (as shown in Fig. 5), is given by  

oE 2p 
o - + (51) 

1 +CrE/G ( 1 - v ) q b  

Not ice  that  here the matr ix  enters th rough  one effec- 
tive parameter ,  g / ( 1 -  v), only. Assuming the con-  
t inuum limit (i.e, L ~ go), the critical q can be ob ta ined  
f rom Ocy(q)/Oq = O, i.e. 

2 2  1 ) /  2 
+ ~ q  + ) - 2  [q ( l + A q 2 ) ] = 0  (52) 

and  

A = c r E  (53) 
Gq 2 

B - 2~t (54)  
Gb(1 - v) 

Fo r  a weak matr ix,  i.e. g is small and thus 1/13 is 
large, we have qc = [B/(2A)] 1/3 in agreement  with 
Equa t ion  48. Fo r  a s t rong matr ix,  i.e. la is large and 
thus lIB is small, the n u m e r a t o r  is always posit ive and  
q diverges. Thus  beyond  a certain value for g 
one always finds ere = G. Unfor tunate ly ,  due to the 
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Figure 6 tyc divided by G versus the matrix shear modulus,  ix, for (a) 
P P T A  (~,==~ = 123 GPa,  G = 2 GPa), (b) P B T  (k===, = 265 GPa,  
G = 1.2 GPa), and (c) PE (L . . . .  = 117 GPa,  G = 0.7 GPa). ( ) 
n = 7, (Equation 51), ( - - )  low IX approximation (Equation 47). 
The values for k==z and G are taken from [18] and [21]. For the 
matrix's Poisson's  ratio we use v = 0.35. 

approximate nature of the interpolation, it is not clear 
whether this "transition" indeed manifests itself in 
terms of a jump in qc rather than in a continuous 
increase. Nevertheless, it is evident that below a cer- 
tain matrix stiffness, the compressive strength is 
a strong function of the matrix elastic constants, 
whereas above a certain matrix stiffness the compres- 
sive strength is virtually equal to G, in agreement with 
previous findings (see below). 

However, here Equation 51 allows the crossover to 
be estimated. Fig. 6 shows the critical fibre compres- 
sive strength, crc, divided by G as a function of g for 
different fibres, i.e. PPTA, poly(p-phenyethlene 
benzobisthiazole) (PBT), and polyethylene (PE). In 
this plot we compare Equation 51 with the approxi- 
mation Equation 47 as well as with the solution for 
n = 7. Evidently, the interpolation Equation 51 per- 
forms quite well. Fig. 6 also allows estimation of how 
flexible a matrix material can be before the compres- 
sive strength of the fibres is diminished. Notice that 
the matrix's Poisson's ratio, v, here is taken to be 0.35. 
However, notice also that Equation 51, which is 
a good approximation, depends on the matrix's elastic 

1 . 5  . . . .  I , , , l l , l l , l , , , i  

"-o 

0,5 

(v) (iv)(iii)(ii) 

, , , , I i i t i i i i i i I i i i 
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j ~  ( i i i )  

( b )  

, , , , I = = i = I = i = i i i = = i 

0.05 0.1 0.15 0.2 

(GPa) 

Figure 7 ~c/G versus the matrix shear modulus,  IX. (a) G = 2 G P a  
and X . . . .  = (i) 50 GPa,  (ii) 100 GPa,  (iii) 150 GPa,  (iv) 200 GPa,  (v) 
250 GPa.  (b) X . . . .  = 150 GPa  and G = (i) 1 GPa,  (ii)3GPa, (iii) 
5 GPa.  The matrix's Poisson's ratio v = 0.35. All curves are ob- 
tained with n = 7. 

constants only through the ratio g/(1 - v). Thus, the 
effect of varying v can, to a good approximation, be 
estimated by scaling g. 

Fig. 7 gives a more systematic overview of the 
critical fibre compressive strength as a function of the 
stiffness of the surrounding matrix material. For 
a constant fibre shear modulus, G, Fig. 7a shows that 
the crossover is shifted to lower values for the matrix 
shear modulus, la, as the longitudinal modulus, 
X . . . .  increases. In Fig. 7b we keep X . . . .  constant and 
vary G. Here increasing G also increases the la at the 
c r o s s o v e r .  

6. C o n c l u s i o n  
The compressive strength of a uniaxially anisotropic 
polymer fibre embedded in an isotropic matrix has 
been studied. One result of our elastic stability analy- 
sis is a simple expression, which describes the critical 
compressive stress as function of the elastic constants. 
Another important point is that this analysis allows 
estimation of to what extent the elastic stability of the 
fibre is affected by the surrounding matrix. In particu- 
lar, we can estimate the threshold stiffness of the 
matrix material below which the measured critical 
fibre compressive strength varies as a function of the 
matrix's elastic constants. 

In principle, the present model does allow for com- 
pressive strengths in the range of the experimental 
data, which, as was pointed out above, seem to be well 
described by G/3 1-18]. From the micrographs of the 
buckled fibres [18], or from the data on the kink-band 
density at compressive failure of the embedded fibres 
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[7], one can see that failure occurs at qb ~0.01~).1. 
These values correspond to c~ ~ 0.1G-1.OG (Fig. 5), 
giving a reasonable estimate in comparison to the 
experimentally observed values. Unfortunately, we 
lack the information necessary to judge whether the 
gluing of the fibres to their support beams, as de- 
scribed elsewhere [18], might account for the G/3 and 
behaviour. However, as Fig. 6 shows, the matrix (glue) 
shear modulus would have to be rather low. In addi- 
tion, what is unknown here but as this analysis shows 
should be considered, is the fibre must be embedded in 
a "thick enough" coating on the order of 1/qr (cf. the 
expressions for the matrix displacement field derived 
in the Appendix) in order to avoid effects due to the 
finite matrix thickness. Another disturbing point is 
that the compressive strength of PE appears to be 
severely overestimated (about five times) by the G/3 
curve in [-18], which would indicate some basic differ- 
ence from the other fibres tested, and 

Even though the present model includes the inter- 
action of the fibre with the matrix more accurately as 
the foundation model, we are nevertheless forced to 
simplify the calculation by employing two rather 
crude approximations. Because we ignore the third 
dimension we cannot estimate the influence of the 
shape of the fibre cross-section on the compressive 
strength�9 However, two shear correction expressions 
for the buckling of isolated slender columns, i.e. Equa- 
tions 1 and 2 were discussed in Section 1 [9]. It was 
found that the difference between a circular and a rec- 
tangular cross-section is about 10%. Only, (in the 
context of fibres) for more exotic cross-sections, such 
as those of H-beams, does one obtain more significant 
deviations. A more severe approximation, on the other 
hand, might be the x-independence of the displace- 
ment u. Avoiding this approximation, however, makes 
the analytical treatment significantly more difficult. 
For instance, there are additional elastic constants. 
This might be the reason why, for instance, the experi- 
mental PE result deviates so strongly from the system- 
atic behaviour shown by the other fibres. Here a finite 
element analysis might perhaps be useful. 

In this work we have not discussed the role of the 
internal fibre structure, such as the degree of molecu- = 
lar orientation, the difference in the molecular organ- 
ization in the skin as compared to the core region of 
a fibre, the role of inter-molecular interactions such as 
hydrogen bonding, and possible inelastic processes, 
such as intra-fibre delamination, fibre-matrix de- 
lamination, etc., which differ from material to material 
and which may depend on processing. These effects 
are mostly beyond the present approach, with the 
possible exception of skin-core effects, which might be 
included by the introduction of surface regions distin- 
guished from the core region by different values of the 
elastic constants. But more importantly, if we believe 
the quasi-universal G/3 behaviour observed in 1-18], 
this would indicate that all non-universal effects enter 
primarily through the elastic constants of the material, 
rather than affecting the compressive strength directly. 
Therefore, checking whether more than the five out of 
six tested fibres follow this relation could provide 
valuable insight. 
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Appendix 
In order to solve the equilibrium conditions (Equa- 
tion 37) we make the Ansatz 

u(x,z) = ~ ~(x, qj)e iq~z (A1) 
j ~  - -oo 

w(x,z) = ~ #(x,  qj)e iq~z 
j =  - -o0  

which yields 

Oz 
(1 + n) ~x 2 ~(x, qj) - q2~(x, qj) 

(A2) 

+ l ~ q j = - w ( x , q  2) = 0 .Ox - ~ 

~2 
- ( 1  + f~) q2 ~(x,  q2 ) + ~x 2 ~(x,  q2 ) 

(A3) 

+ ~ff2qjw-~(x, qfl = 0 
t3x " " 

(A4) 

Making the substitutions 

yl(x)  = a(x, q j); y2(X) = ~X a(X, qj); 

Ya (x) = # (x, q j); y4(x) = ~-~ ~ (x, q j) (AS) 

we obtain a system of coupled first-order differential 
equations, i.e. 

[ yl (x) ] 
/y2(x)/ 

0x iy (x)/ 
[ y4(x) J 

0 1 0 0 
q2 

1 + ~  0 0 - i  

0 0 0 1 

0 -- if~q (1 + ~,-~)q2 0 

[ y ,  (x) ] 

• 
] y3(x) ] = My(x)  (A6) 

Ly,(x)] 
We seek a solution in the form y(x) = eXXv and thus 
( M - s  where s  Following 
standard methods we find 

y(x) = ~,e - ~  1 + C2e-qx 

q 
1 

i 2i 
q +-q~ + ix 

2i 
- -- - iqx 

f~ 
X 

1 -- qx 



+ C3 eqx 

i 
-q 
--i 

+ C4 eqx 

q 
1 

i 2i q+ fi-ix 
2i 

- - iqx  

X 

1 + q x  

(A7) 

Notice that the first and third vectors correspond to 
the two linear independent solutions of the above 
eigensystem for - q  and q. The other two solutions 
are derived from the solution of (M - M) (M - )d) 
v~ = 0 (with (M - X1) v~ r 0) for - q  and q, i.e. they 
are given by exp (Xx) (v~ + x (M  - X1) v~). Actually, in 
the present case we choose to construct the solution, 
which we are going to use below, based on both 
independent solutions of (M - )d) (M - M) Vk = 0, 
i.e. exp(Xx) (v~ + x (M -- X1) Vk), where k = 1,2. Thus 

y(x) = c~e - ~  

qx~  + 2f~ + 2 
i 

f~ 

qxO + f~ + 2 
- iq 

f~ 

1 + q x  

- -  x q  2 

-~- C2 d - q x  

.qxf~ + f~ + 2 
l 

qf~ 

�9 q x ~  + 2 
- - t  

1 - -  q x  

+ c 3 e  qx 

�9 qxf~ - 2~ - 2 
l 

f~ 

--qxD + f~ + 2 
- i q  

1 - -  q x  

- -  x q  2 

+ c4e  qx 

i - - q x f ~ + f ~ + 2  
qf~ 

--qxf~ + 2 
i 

X 

1 + q x  

(A8) 

For  the u-displacement, we consequently have 

[ ie ~zq~ 
u(x,z) = ~ cl ( j ) (x f~qj  + 2f~ + 2)e xqj 

j =  - -  oO 

+ c3(j)(xf~qj - 2f~ -- 2)e xqj 

+ c2(j) (xf~qj + f~ + 2) e -xqj 
qj 

( -  xOqj + f~ + 2) 
+ c 4 ( j )  e xqJ (A9) J qj 

First we consider the matrix displacement field for 
negative x (with positive q, because u(x, z) must vanish 
for x--, -oo) 

e ~qi (x~q~ -- 2f~ -- 2) 
u -  (x, z) = f~ 

• [ i c 3 ( j ) e  izqj - -  i C l ( - - j ) e - i z q S ]  

eXqJ(--x~qj + f~ + 2) 
+ 

f~qj 

x [ic ,( j )e  i'qj -- ic2(--j)e -i=q~] (A10) 

Notice that we consider the single mode (single q) case. 
In order to be able to match the fibre displacement 
along the boundary we must have 

ic3(j) = - i c l  ( - j )  and ic4(j) = --iCE (--j) (All)  

and thus 

2ie~qJ I u - ( x , z ) = - - f f -  ( - x n q ~ +  2n + 2 ) c l ( . j )  (A12) 

(--xf~qj + f~ + 2) c2(_ j )  1 COS(Zqj) + UO 
J qj 

where we have added 

- uo;  - ~ + 2f~ + c l  ( - j )  

q ; ( ~ - 2 + f 2 + 2 ) c 2 ( - - j )  1 (A13) 

so that the solution matches the fibre displacement (cf. 
Equations 14 and 19 at the boundary x = - b/2). Note 
that this displacement field is also correct for q --- 0, i.e. 
u(x,z) = 0 for q = 0. Now for u(x,z) on the other side 
of the fibre, analogous to the above, we have 

u+ (x,z ) = ie-~q~(xf~qj + 2~ + 2) 
f~ 

x [ei=qJcl ( j )  - e-i=q~c3 ( - j ) ]  (A14) 

ie mj (x~qj  + f~ + 2) + 
f~q ; 

x [eiZqic2 ( j)  - e-i=qJc4 ( - j ) ]  

c 3 ( - j ) = - c l ( j ) ;  c , ( - j ) = - c 2 ( j )  (A15) 

+ (x, z) 2ie-X~J [ - n (xf~qj+2f~+2)c~(j)  (A16) U 

L 

(xf~qj + f~ + 2) 
q c2(j) COS(Zqj) + Uo 

J qj 

Again we have added 

- U o j -  : ~ + 2 ~ + 2  c l ( j )  

1 ( _ ~  ) 1 + - -  + f l + 2  c2(j)  (A17) 
qj  

1651 



Now we turn to the w-displacement 

w(x,z) = ~ ei~qJ(ca(j)(1 + xqj)e-XqJ + c2(j)xe-~qJ 
j ~  --o0 

+ c3(j)(1 - xqj)e ~q~ + c4(j)xeXq 0 (A18) 

Again, we split the summation according to the solu- 
tions for negative and positive x when qj is positive. 
For the case when x is negative, matching the fibre 
displacements at the boundary requires 

c 3 ( j ) = - - C l ( - - j ) ;  c 4 ( j ) = - - C 2 ( - - j )  (A19) 

And thus 

w- (x, z) = -2 ie  *qJ [(1 - xqj)cl ( - j )  

+ xc2 ( - j ) ]  sin (zqj) (A20) 

Analogously 

c 3 ( - j ) = - c l ( - j ) ;  c 4 ( - j )  = - c 2 ( j )  (A21) 

and 

w + (x, z) = 2ie- xqJ [(1 + xqj) cl (j) + xc2 (j)] sin (zqj) 

(A22) 

for positive x. 
The next step is to consider the boundary condi- 

tions given by 

= g UlI(X'Z) + ~xWII(X, Z) _+b (A23) 
x =--~-- 

where the subscripts I and II denote the fibre and the 
surrounding medium, respectivelyl Using the fibre dis- 
placements 

Ul(Z) = u0 [1 - cos(qz)] (A24) 

and 

wt(x, z) = - qxuo [1 - e(x)] sin (qz) (A25) 

we obtain at x = - b / 2  

g~-- 2ige -bqj/2 - 2qj ~ + ~ -  + l cl ( - j )  

+ ( 2  + bqj) c2 ( - j ) ]  = O (A26) 

and a t  x = b/2 

O~--2ige7 bqJ/2 - 2 q j  ~ + ~ + 1  ca(j) 

-(-~+bq,)c2(J)]=O (A27) 

where 9j is above 9 (cf. Equation 23) with q = qj. 
Notice that the preceding two equations together with 
the above conditions involving Uoi imply that 

c l ( - j )  = c l ( j ) ;  Cz(--j) = --c2(j)  (A28) 

At this point we have all the ingredients to calculate 
the elastic potential energy of the matrix, which is 
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given by 

f:f- 2 fo.f  7~matr ix = HI; dz dx + HI]- dz dx (A29) 
- / 2  

where 

l r w+ HI~ ----- "-]- ~.l ~XX, ~ (X,Z) "+ LO Z II (X,Z) 

(A30) 

+ ~.  + + ~" Ux Ufi (x'z) ~_ wtT (x,z) 

~t[~ w+ ~u + j2 
+ ~ Uxx ~ (x,z) + ~ ,7(x,z) 

is the local elastic free energy of an isotropic medium 
[8]. Again we can write the result in matrix form, 
which leads to Equations 40-45 with 

cl = icl(j); cz = i c 2 ( j )  (A31) 
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